Параллелепипедпризма, основанием которой является параллелограмм либо (равносильно) многогранник с шестью гранями, являющимися параллелограммами. Шестигранник.

 

Параллелограммы, из которых состоит параллелепипед являются гранями этого параллелепипеда, стороны этих параллелограммов являются ребрами параллелепипеда, а вершины параллелограммов — вершинами параллелепипеда. У параллелепипеда каждая грань является параллелограммом.

 

Как правило выделяют любые 2-е противолежащие грани и называют их основаниями параллелепипеда, а оставшиеся грани — боковыми гранями параллелепипеда. Ребра параллелепипеда, которые не принадлежат основаниям являются боковыми ребрами.

 

2 грани параллелепипеда, которые имеют общее ребро являются смежными, а те, которые не имеют общих ребер — противоположными.

 

Отрезок, который соединяет 2 вершины, которые не принадлежат 1-ой грани является диагональю параллелепипеда.

 

Длины ребер прямоугольного параллелепипеда, которые не параллельны, являются линейными размерами (измерениями) параллелепипеда. У прямоугольного параллелепипеда 3 линейных размера.

 

Типы параллелепипеда.

Существует несколько видов параллелепипедов:

 

Прямым является параллелепипед с ребром, перпендикулярным плоскости основания.

 

Прямой параллелепипед с прямоугольником в основании является прямоугольным параллелепипедом. У прямоугольного параллелепипеда каждая из граней является прямоугольником.

Описание: C:UsersiriffochkaDesktopRectrangular_parallelepiped.png

Наклонный параллелепипед — это параллелепипед, у которого боковые грани расположены, по отношению к основаниям, под углом, не равным 90 градусов.

 

Описание: C:UsersiriffochkaDesktopParallelepipedon.png

 

Прямоугольный параллелепипед, у которого все 3 измерения имеют равную величину, является кубом. Каждая из граней куба – это равные квадраты.

 

Произвольный параллелепипед. Объём и соотношения в наклонном параллелепипеде в основном определяются при помощи векторной алгебры. Объём параллелепипеда равняется абсолютной величине смешанного произведения 3-х векторов, которые определяются 3-мя сторонами параллелепипеда (которые исходят из одной вершины). Соотношение между длинами сторон параллелепипеда и углами между ними показывает утверждение, что определитель Грама данных 3-х векторов равняется квадрату их смешанного произведения.

 

Свойства параллелепипеда.

  • Параллелепипед симметричен относительно середины его диагонали.
  • Всякий отрезок с концами, которые принадлежат поверхности параллелепипеда и который проходит через середину его диагонали, делится ею на две равные части. Все диагонали параллелепипеда пересекаются в 1-ой точке и делятся ею на две равные части.
  • Противоположные грани параллелепипеда параллельны и имеют равные размеры.
  • Квадрат длины диагонали прямоугольного параллелепипеда равняется сумме квадратов 3-х его измерений.

 

В параллелепипед вписывают тетраэдр. Объем этого тетраэдра будет равняться третьей части объема параллелепипеда.

 

Описание: C:UsersiriffochkaDesktopm_673.gif

 

Описание: C:UsersiriffochkaDesktopm_674.gif