Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.
Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.
В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть, сумма плоских углов у каждой вершины = 270º. |
Число сторон у грани – 4; Общее число граней – 6; Число рёбер примыкающих к вершине – 3; Общее число вершин – 8; Общее число рёбер – 12; |
![]() |
Предположим, что а – длина стороны куба, а d — диагональ, тогда:
V= a³
S= 6a²
Радиус описанной сферы вокруг куба:
Диагональ куба:
Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра куба.
Свойства куба.
перпендикулярно четырём его главным диагоналям.
совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от объёма куба.
куба.
октаэдра.
6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра располагается на 6-ти гранях куба.
Элементы симметрии куба. |
Ось симметрии куба может пролегать или сквозь середины ребер, которые параллельны, не принадлежащих одной из граней, или сквозь точку пересечения диагоналей противолежащих граней. Центром симметрии куба будет точка пересечения диагоналей куба. |
![]() |
![]() |
Сквозь центр симметрии куба проходят 9 осей симметрии. Плоскостей симметрии у куба тоже 9, они пролегают или через противолежащие ребра (таких плоскостей 6), или через середины противолежащих ребер (таких 3). |
![]() |