Октаэдр — один из 5-ти выпуклых правильных многогранников - Платоновых тел.
У октаэдра 8 треугольных граней, 12 рёбер, 6 вершин, к каждой его вершине сходятся 4 ребра.
На примере октаэдра легко проверить формулу Эйлера 6в+8г-12р=2. В каждой из вершин октаэдра сходятся 4 треугольника, т.о., сумма плоских углов у вершины октаэдра равна 240°. Из понятия правильного многогранника делаем вывод, что каждое ребра октаэдра имеет одинаковую длину, а грань - одинаковую площадь.
Обозначим длину ребра октаэдра как а, значит площадь полной поверхности октаэдра (S) и объём октаэдра (V) найдем из таких формул:
Радиус описанной сферы около октаэдра:
Радиус вписанной сферы около октаэдра:
Сумма длин всех ребер равна 24а.
Двугранный угол: α=2ϕ≈109,47°, где
Свойства октаэдра.
Октаэдр легко вписывается в тетраэдр, при этом 4 из 8-ми граней октаэдра совместятся с 4-мя гранями тетраэдра, каждая из 6-ти вершин октаэдра совместится с центрами 6-ти ребер тетраэдра.
Октаэдр легко вписывается в куб (гексаэдр), при этом каждая из 6-ти вершин октаэдра совместится с центрами 6-ти граней куба.
В октаэдр легко вписать куб, при этом каждая из 8-ми вершин куба будут располагаться в центрах 8-ми граней октаэдра.
У правильного октаэдра есть симметрия Oh, которая совпадает с симметрией куба.
Развёртка октаэдра.
Симметрия октаэдра.
3 из девяти осей симметрии октаэдра проходят сквозь противолежащие вершины, 6 - квозь середины ребер. Центр симметрии октаэдра - точка пересечения осей симметрии октаэдра. |
3 из девяти плоскостей симметрии тетраэдра проходят сквозь все 4 вершины октаэдра, которые лежат в одной плоскости. 6 плоскостей симметрии проходят через 2 вершины, которые не принадлежат одной грани, и середины противолежащих ребер. |