Правильная пирамида - когда основанием пирамиды является правильный многоугольник, а высота проецируется в центр основания (или проходит через него).
В правильной пирамиде все боковые ребра имеют одинаковую величину, и каждая боковая грань является равнобедренными треугольниками одного размера.
Правильная пирамида обладает следующими свойствами:
- боковые рёбра правильной пирамиды имеют равную величину;
- в правильной пирамиде каждая боковая грань — конгруэнтный равнобедренный треугольник;
- во все правильные пирамиды можно как вписать, так и описать вокруг неё сферу;
- когда центры вписанной и описанной сферы совпадают, значит, сумма плоских углов у вершины пирамиды равняется
, а всякий из них соответственно
, где n — число сторон многоугольника основания;
- площадь боковой поверхности правильной пирамиды равняется ½ произведения периметра основания на апофему.
Формулы для правильной пирамиды.
V - объем пирамиды,
S - площадь основания пирамиды,
h - высота пирамиды,
Sb - площадь боковой поверхности пирамиды,
a - апофема (не путать с α) пирамиды,
P - периметр основания пирамиды,
n - число сторон основания пирамиды,
b - длина бокового ребра пирамиды,
α - плоский угол при вершине пирамиды.
Ниже указанная формула определения объема используется лишь для правильной пирамиды:
V - объем правильной пирамиды,
h - высота правильной пирамиды,
n - количество сторон правильного многоугольника, основания правильной пирамиды,
a - длина стороны правильного многоугольника.
Боковое ребро правильной пирамиды находят по формуле:
где b — боковое ребро правильной пирамиды (SA, SB, SC, SD либо SE),
n — количество сторон правильного многоугольника (основание правильной пирамиды),
a — сторона правильного многоугольника (AB, BC, CD, DE либо EA) - основания правильной пирамиды,
h — высота правильной пирамиды (OS).
Указания к решению задач. Свойства, которые мы перечислили выше, помогают при практическом решении. Когда нужно определить углы наклона граней, их поверхность и так далее, значит общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для определения отдельных элементов пирамиды, так как большинство элементов оказываются общими для нескольких фигур.
Нужно разбить всю объемную фигуру на отдельные элементы - треугольники, квадраты, отрезки. Дальше, к отдельным элементам применяем знания из курса планиметрии, что очень упрощает определение ответа.
Правильная треугольная пирамида.
Правильная треугольная пирамида - это пирамида, у которой основанием оказывается правильный треугольник, а вершина опускается в центр основания.
Формулы для правильной треугольной пирамиды.
Формула для нахождения объема правильной треугольной пирамиды:
V - объем правильной пирамиды, которая имеет в основании правильный (равносторонний) треугольник,
h - высота правильной пирамиды,
a - длина стороны основания правильной пирамиды.
Так как правильная треугольная пирамида - это частный случай правильной пирамиды, значит, формулы, верные для правильной пирамиды, оказываются верными и для правильной треугольной.
Еще одним частным случаем правильно пирамиды является тетраэдр.