Правила деления дробей.
1. Чтобы поделить 1-ну дробь на вторую, необходимо делимое умножить на число, которое обратно делителю.
2. Чтобы поделить дробь на натуральное число, необходимо делимое умножить на число, которое обратно делителю.
3. Иными словами, чтобы поделить дробь на натуральное число, необходимо знаменатель умножить на это число.
4. На ноль делить нельзя.
5. На смешанную дробь делить нельзя.
6. При определении результата пользуйтесь основным свойством дробей для сокращения дробей.
Для правильных и неправильных дробей правило деления следующее:
Чтобы поделить обыкновенную дробь, необходимо числитель делимого умножить на знаменатель делителя, а знаменатель делимого умножить на числитель делителя. Первое произведение берем числителем, а второе — знаменателем.
Деление дроби на дробь.
Чтобы разделить 1-ну обыкновенную дробь на вторую, не равную нулю, необходимо:
- числитель 1-ой дроби умножить на знаменатель 2-ой дроби и записать произведение в числитель полученной дроби;
- знаменатель 1-ой дроби умножить на числитель 2-ой дроби и записать произведение в знаменатель полученной дроби.
Иными словами, деление дробей переходит к умножению.
Чтоб поделить 1-ну дробь на вторую, необходимо делимое (1-ну дробь) умножить на обратную дробь делителю.
Деление дроби на число.
Схематически деление дроби на натуральное число выглядит так:
Чтобы поделить дробь на натуральное число, используют такой метод:
Выражаем натуральное число как неправильную дробь с числителем, который равен самому числу, а знаменатель равным 1-це.
Далее производим деление по правилу деления дроби на дробь.
Деление смешанных чисел.
При делении смешанных чисел необходимо представить числа как неправильные дроби, а далее делим их друг на друга по правилу деления дроби на дроби.