Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь (как отношение двух целых чисел), где m — целое число, n — натуральное число. Иррациональное число можно представить как бесконечную непериодическую десятичную дробь.
Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например, квадратный корень из двух – является числом иррациональным.
Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.
Множество иррациональных чисел зачастую обозначают заглавной латинской буквой в полужирном начертании без заливки. Т.о.:
,
Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.
Свойства иррациональных чисел.
- Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
- Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
- Всякое вещественное трансцендентное число - это иррациональное число.
- Все иррациональные числа являются или алгебраическими, или трансцендентными.
- Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
- Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
- Множество иррациональных чисел бесконечно, является множеством 2-й категории.
- Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
- Сумма рационального и иррационального чисел всегда будет иррациональным числом.
- Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).
Иррациональные числа, примеры.
γ — ζ(3) — ρ — √2 — √3 — √5 — φ — δs — α — e — π — δ
для любого натурального n, не являющегося точным квадратом;
- ex для любого рационального x ≠ 0;
- ln x для любого положительного рационального x ≠ 1;
(число пи), а также
n для любого целого n ≠ 0.