Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь
Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например, квадратный корень из двух – является числом иррациональным.
Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.
Множество иррациональных чисел зачастую обозначают заглавной латинской буквой
Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.
Свойства иррациональных чисел.
- Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
- Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
- Всякое вещественное трансцендентное число - это иррациональное число.
- Все иррациональные числа являются или алгебраическими, или трансцендентными.
- Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
- Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
- Множество иррациональных чисел бесконечно, является множеством 2-й категории.
- Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
- Сумма рационального и иррационального чисел всегда будет иррациональным числом.
- Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).
Иррациональные числа, примеры.
γ — ζ(3) — ρ — √2 — √3 — √5 — φ — δs — α — e — π — δ
для любого натурального n, не являющегося точным квадратом; - ex для любого рационального x ≠ 0;
- ln x для любого положительного рационального x ≠ 1;
(число пи), а также n для любого целого n ≠ 0.