Решение матриц – это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица – таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n.
Общий вид матрицы:
Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:
- Главная диагональ, состоящая из элементов а11,а22…..аmn.
- Побочная диагональ, состоящая из элементов а1n,а2n-1…..аm1.
Основные виды матриц:
- Квадратная – такая матрица, где число строк = числу столбцов (m=n).
- Нулевая – где все элементы матрицы = 0.
- Транспонированная матрица — матрица В, которая была получена из исходной матрицы A путем замены строк на столбцы.
- Единичная – все элементы главной диагонали = 1, все остальные = 0.
- Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а12=а21, а13=а31,….а23=а32…. аm-1n=аmn-1, то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.
Далее приведем основные методы решения матриц.
Методы решения матриц.
Почти все методы решения матрицы заключаются в нахождении ее определителя n-го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.
Нахождение определителей 2-го порядка.
Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:
Методы нахождения определителей 3го порядка.
Ниже приведены правила для нахождения определителя 3го порядка.
Правило треугольника при решении матриц.
Упрощенно правило треугольника, как одного из методов решения матриц, можно изобразить таким образом:
Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:
Правило Саррюса при решении матриц.
При решении матриц правилом Саррюса, справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":
Разложение определителя по строке или столбцу при решении матриц.
Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.
Приведение определителя к треугольному виду при решении матриц.
При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.
Теорема Лапласа при решении матриц.
Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ – это определитель n-го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k ≤ n – 1. В таком случае сумма произведений всех миноров k-го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы:
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Вычисляем алгебраические дополнения.
- Составляем союзную (взаимную, присоединённую) матрицу C.
- Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
- Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.
Решение систем матриц.
Для решения систем матриц наиболее часто используют метод Гаусса.
Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.
Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.
Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.