Ряд Тейлора — разложение функции в бесконечную сумму степенных функций.
Ряд Тейлора применяют для апроксимации функции многочленами. То есть, линеаризация уравнений проходит путем разложения в ряд Тейлора и отсечения каждого члена старше 1-го порядка.
Определение ряда Тейлора.
Функция f(x) бесконечно дифференцируется в некоторой окрестности т.a:
Этот ряд называется рядом Тейлора функции f в т.a.
Т.е., рядом Тейлора функции f(x) в окрестности точки a является степенной ряд относительно двучлена x - a типа:
Свойства ряда Тейлора.
Если f есть аналитическая функция во всякой точке a, то ряд Тейлора этой функции во всякой точке a области определения f сходится к f в некоторой окрестности a.
Есть бесконечно дифференцируемые функции, ряд Тейлора которых сходится, однако, при этом отличается от функции во всякой окрестности a. Вариант, предложенный Коши:
У этой функции каждые производные в 0 равны нулю, поэтому коэффициенты ряда Тейлора в точке a=0 равны 0.
Если у функция f(x) есть непрерывные производные вплоть до (n+1)-го порядка, то эту функцию можно разложить в степенной ряд по формуле Тейлора:
где Rn − остаточный член в форме Лагранжа определяют так:
Если это разложение сходится в некотором интервале x, т.е. , значит, оно является рядом Тейлора, который представляет разложение функции f (x) в т.a.
Если a = 0, значит, это разложение является рядом Маклорена:
Ряды Маклорена некоторых функций.
1. Экспонента: ,
2. Натуральный логарифм:
3. Биномиальное разложение: для всех |x|<1 и всех комплексных α, где:
,
- Квадратный корень:
для всех |x|<1,
для всех |x|<1,
- Конечный геометрический ряд:
для всех
,
4. Тригонометрические функции:
- Синус:
,
- Косинус:
,
- Тангенс:
для всех
где
— Числа Бернулли,
- Секанс:
для всех
где
— числа Эйлера,
- Арксинус:
для всех |x|<1,
- Арккосинус:
для всех |x|<1,
- Арктангенс:
для всех |x|<1,
5. Гиперболические функции:
,
,
для всех
,
для всех |x|<1,
для всех |x|<1,