Калькулятор для перевода систем счисления онлайн.
Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали называть арабской.
Позиционная система — значение всех цифр зависит от позиции (разряда) данной цифры в числе.
Примеры, стандартная 10-я система счисления – это позиционная система. Допустим дано число 453. Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение. Таким образом, заданное число запишем в виде суммы 400+50+3=453.
Двоичная система счисления.
Здесь только 2 цифры – это 0 и 1. Основание двоичной системы - число 2.
Цифра, которая находится с самого края справа, указывает количество единиц, вторая цифра - количество двоек, далее - количество четверок и так далее.
Во всех разрядах возможна лишь одна цифра — или нуль, или единица.
С помощью двоичной системы счисления возможно закодировать всякое натуральное число, представив это число в виде последовательности нулей и единиц.
Пример: 10112 = 1*23 + 0*2*2+1*21+1*20 =1*8 + 1*2+1=1110
Двоичную систему счисления, как и десятичную систему счисления, зачастую используют в вычислительной технике. Текст и числа компьютер хранит в своей памяти в двоичном коде и программным способом преобразует в изображение на экране.
Сложение, вычитание и умножение двоичных чисел.
Таблица сложения в двоичной системе счисления:
Таблица вычитания в двоичной системе счисления:
Пример сложения «столбиком» (1410 + 510 = 1910 или 11102 + 1012 = 100112):
Таблица умножения в двоичной системе счисления:
Пример умножения «столбиком» (1410 * 510 = 7010 или 11102 * 1012 = 10001102):
Преобразование чисел в двоичной системе счисления.
Для преобразования из двоичной системы в десятичную пользуются следующей таблицей степеней основания 2:
Начиная с цифры один каждая цифра умножается на 2. Точка, стоящая после 1, называют двоичной точкой.
Преобразование двоичных чисел в десятичные.
Пусть, есть двоичное число 1100012. Для перевода в десятичное записываем его в виде суммы по разрядам следующим образом:
1 * 25 + 1 * 24 + 0 * 23 + 0 * 22 + 0 * 21 + 1 * 20 = 49
Немного по другому:
1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49
Также хорошо записывать расчет как таблицу:
Двигаемся справа налево. Под всеми двоичными единицами записываем её эквивалент строчкой ниже. Далее складываем десятичные числа, которые мы получили. Т.о., двоичное число 1100012 = десятичному 4910.
Преобразование дробных двоичных чисел в десятичные.
Задание: перевести число 1011010, 1012 в десятичную систему.
Записываем заданное число в таком виде:
1*26 +0*25 +1*24 +1*23+0 *22 + 1 * 21 + 0 * 20 + 1 * 2-1 + 0 * 2-2 + 1 * 2-3 = 90,625
Другой вариант записи:
1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625
Либо в виде таблицы:
Преобразование десятичных чисел в двоичные.
Пусть, необходимо перевести число 19 в двоичное. Можем сдеать это таким образом:
19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 без остатка 0 2 /2 = 1 без остатка 0 1 /2 = 0 с остатком 1
То есть, каждое частное делится на 2 и записывается остаток в конец двоичной записи. Деление продолжается до того момента, когда в частном не будет нуля. Итог пишем справа налево. Т.е. нижняя цифра (1) будет крайней левой и так далее. Итак, у нас получилось число 19 в двоичной записи: 10011.
Преобразование дробных десятичных чисел в двоичные.
Когда в заданном числе присутствует целая часть, то ее преобразуют отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную происходит следующим образом:
разряда числа в двоичной системе счисления;
достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.
Пример: Нужно перевести дробное десятичное число 206,116 в дробное двоичное число.
Переведя целую часть, получаем 20610=110011102. Дробная часть 0,116 умножается на основание 2, заносим целые части произведения в разряды после запятой:
0,116 • 2 = 0,232 0,232 • 2 = 0,464 0,464 • 2 = 0,928 0,928 • 2 = 1,856 0,856 • 2 = 1,712 0,712 • 2 = 1,424 0,424 • 2 = 0,848 0,848 • 2 = 1,696 0,696 • 2 = 1,392 0,392 • 2 = 0,784
и так далее. Т.о. 0,11610 ≈ 0,00011101102
Результат: 206,11610 ≈ 11001110,00011101102
Алгоритм перевода чисел из одной системы счисления в другую.
1. Из десятичной системы счисления:
2. Из двоичной системы счисления:
соответствующую степень разряда;
Например, 1000110 = 1 000 110 = 1068
группы по 4 разряда.
Например, 1000110 = 100 0110 = 4616.
Таблицы для перевода:
Также существуют другие позиционные системы, о которых мы поговорим в других статьях: Десятичная система счисления. Двоичная система счисления. Восьмеричная система счисления. Шестнадцатеричная система счисления. Системы счисления. Основные понятия. |